Search results for "Moore–Penrose inverse"

showing 2 items of 2 documents

Inverse eigenvalue problem for normal J-hamiltonian matrices

2015

[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.

Hamiltonian matrixApplied MathematicsHamiltonian matrixMoore–Penrose inverseMatrius (Matemàtica)Normal matrixSquare matrixHermitian matrixCombinatoricssymbols.namesakeMatrix (mathematics)Inverse eigenvalue problemsymbolsÀlgebra linealDivide-and-conquer eigenvalue algorithmMATEMATICA APLICADAHamiltonian (quantum mechanics)Normal matrixEigenvalues and eigenvectorsMathematicsMathematical physicsApplied Mathematics Letters
researchProduct

Generalized inverses and similarity to partial isometries

2010

Abstract We obtain some results related to the problems of Badea and Mbekhta (2005) [1] concerning the similarity to partial isometries using the generalized inverses. Especially, we involve the Moore–Penrose inverses. Also a characterization for such a similarity is given in the terms of dilations similar to unitary operators, which leads to a new criterion for the similarity to an isometry and to a quasinormal partial isometry.

Partial isometryPure mathematicsAluthge transformApplied MathematicsPartial isometryMoore–Penrose inverseCharacterization (mathematics)Unitary stateSimilarityAlgebraSimilarity (network science)IsometryUnitary dilationDuggal transformAnalysisMoore–Penrose pseudoinverseMathematicsJournal of Mathematical Analysis and Applications
researchProduct